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A TRACE THEOREM FOR SOLUTIONS OF
LINEAR PARTIAL DIFFERENTIAL EQUATIONS !

Gang Bao and William W. Symes
Department of Mathematical Sciences
Rice University
Houston, Texas 77251-1892
U.S.A.

Abstract

In this paper. we prove a trace regularity theorem for the solutions
of general linear partial differential equations with smooth coefficients.
Our result shows that by imposing additional microlocal smoothness
along certain directions. the trace of the solution on a codimension
one hypersurface will be just as regular as the solution itself. The
proof is based on the Hormander-Nirenberg pseudo-differential cut-off

technique and a “fattening” lemma, together with standard energy
estimates.

Introduction

The standard trace theorem in Sobolev space H*(IR™) indicates that the trace
map which denotes the restriction of each distribution to a codimension one
hypersurface extends uniquely to a continuous linear operator from H*(IR")
to H7V3HIR™1), if s > 1/2, see Taylor [12] or Hérmander [5] for details. It
is also well known that this trace theorem is sharp. However, it seems quite
natural that one may expect an improvement of regularity of the trace if the
distribution is a solution of a linear partial differential equation. Obviously,
the optimal case would be that of no loss (or even a gain) of smoothness.
The main goal of this work is to determine circumstances under which the
trace of the solution of a linear partial differential equation is as smooth as
the solution itself.

'This work was partially supported by the National Science Foundation under grant
DMS 386-03614 and DMS 89-05878, and by the Office of Naval Research under contracts
N00014-K-85-0725 and NO0O014-J-89-1115.



The trace properties of solutions to linear partial differential equations
have been used widely in various problems such as boundary value problems,
initial-boundary value problems, control problems and in particular, many
inverse problems. In [9], Symes proved a trace theorem for a second order
multidimensional wave equation with constant coefficients: for finite energy
initial data compactly supported away from the boundary, the trace is of
class Hj,. which is the same regularity class as the solution in the interior.
His examples, in the same article, also showed that additional smoothness
of initial data along certain directions (corresponding to grazing rays) is
necessary for the trace to be so regular. We refer to Symes [10] for more
comments, which turn out to be the original idea of our work here.

Clearly, if the linear partial differential equation is strictly hyperbolic
with smooth coefficients, standard energy estimates will yield the fact that
the solution along any spacelike trace is as smooth as itself locally, provided
a sufficiently smooth right-hand side. Unfortunately, for more general equa-
tions or even a strictly hyperbolic differential equation but this time along
a nonspacelike trace. the same idea will not work. essentially because one
does not know how to apply energy estimates to a nonhyperbolic problem
directly.

In this paper, we shall investigate the trace regularity of solutions to linear
p-d.e. Our result shows that the difficulties discussed above may be cured by
imposing some additional microlocal smoothness. In order to see why this is
so, let us begin with the following definition.

Definition. A distribution u is said to be in H° N H} (20,&) if there exist

e

¢ € C°(R™) with é(xy) # 0 and a conic neighborhood I' € R™\ {0} of &
such that

()7 (@u)™(§) € LAR™) and (£)"\r(&)(ou)"(€) € LR .

The reader is referred to Beals [2]. Rauch [3] and references cited there for an
overlook of microlocal analysis and its applications to nonlinear problems.
Roughly speaking, our trace theorem says that the solution will belong
to H*® along a codimension one hypersurface if it belongs to H* in a neigh-
borhood of the hypersurface and H**! in those directions where the p.d.e is
not microlocally strictlv hyperbolic.
The proof of the theorem is based on a pseudodifferential cutoff technique



and standard hyperbolic energy estimates. Similar techniques have been used
by many people, see for example, Homander (6], also Nirenberg [7]. The main
idea is to alter the p.d.o. microlocally to make a nice strictly hyperbolic linear
pseudo-differential equation for which the trace hypersurface is spacelike,
then estimate the remainder via a lemma stated in a fairly general form.
We shall also generalize our idea in the proof of the trace theorem to
obtain trace regularity results to the cases where either the solution defined
only on one side of the hypersurface or the trace hypersurface is characteristic.
We believe that the trace theorem, the lemma and the techniques used in
this work will be helpful in various of other contexts. Some of the applications
have already been seen in our recent work of understanding multidimensional
hyperbolic inverse problems with smooth or nonsmooth coefficients, which
will be reported elsewhere.
Notation. Throughout this paper, the reader is assumed to be familiar
with the basic calculus of pseudodifferential operators (1.d.o.) as stated in
Taylor [12] or Nirenberg [7]. For simplicity, C serves as a generalized positive
constant the precise value of which is not needed. Usually, the constant
from Fourier transform is assumed to be absorbed by the integral. FS(P)
stands for the essential support of operator P, both F and A mean Fourier
transform and () is (14 | € |2)1/2,

1 Preliminary Results

It is interesting to see that from the definition a smooth family of v.d.o.
P(z.y.D:) € OPS]4(IR™), for each y € R™™ with m < n, 1s not necessarily
a ¥.d.o. in R™. For convenience. in the future, we shall denote the smooth
family of ¢.d.0. as P € C>(Rr-m™, OPSY (IR™)). The results in this section
will conclude that a smooth familv of v".d.o. in fact behaves like a v.d.o..
hence will be called a 1.d.o.-like operator.

This section is devoted to the understanding of these ¢.d.o.-like operators.

The simplest example of a smooth family of r.d.o. is a ¥’.d.0. in fewer vari-
ables, i.e. P(z.y,D,) = P(z.D,). Proposition 1 shows that such operators
have the same Sobolev space continuity properties as ordinary ¥.d.o.s.

Proposition 1 If p(z,¢) € STolIR™). 1 < m < n, satisfies one of the fol-
lowing assumptions:



1. p(z,&) = p(£), i.e., it is independent of z;

2. p(z,€) has compact support in z,
then
Plz,D.): H*(R") - H*"(IR")
continuously.
Proof. For simplicity, we only prove the second statement here. The first one

follows from the fact F,[P(D,)u(x, y)] = P(&)a(&,y). It suffices to prove for
r=0 case and derive the appropriate norm estimates. Let u € S, the Schwarz

space, write p(z,{) = [ F,p(n, £)e*"dn, with Fep(n,€) = [ p(zy. E)e=1dz,.
Assumption 2 on p(r, ) implies that | Fep(n, &) |< C’N(n)—N , VN>0.

F(P(z.D)u)(n,¢) = [ Fupln — £.)al€.¢)de
we have
| F(P@, De)e)(n ) 1< C [ (n =) [a(e,¢) [ de .

Therefore,

1Pz, Ds)ull

: 2
<cfifu-o e onaeo ) d
7
for large N, Young's inequality yields that

1P Daully, < € [ €0 HEC) | IEagdd = C1 .
O
Note that, the only thing prevents P(r.y, D, ) from being a y.d.o. of
order r is that its symbol p(z,y,£) does not decrease in any directions other
than ¢-direction. This implies that via a pseudodifferential cutoff along those
nondecay directions P may be regularized to be a v.d.o.. which leads to our
next proposition.
From now on, [T, : X € T*(IR") — Y € IR™ x IR™ serves as a map for
n>m,
Mo(X) = {(z.p.) €Y : (zop.fin) € X} .
Recall that the normal bundle of a foliation R™ = IR"*™™ x R™ is the set

_{/\/’ - {(’L‘7y’€777) 6 Rln X IRn—m % IRm % IR,n—m, { — 0} )
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Proposition 2 Assume that P(z,y,£) € C°(R*™™, OPS] ,(R™)), H(z,y,D:, D) €
OPS;o(R*), 1 <m < n, rs € R and ¢(z,y) € C3°(R"). Furthermore,

assume that

ES(H)yNnN =0,
where N is the normal bundle of R™ x R*™™. Then
PoH € OPSTH*(R™ x R™)

and

ES(PH) C LES(P(-,y.-))NES(H) .

Proof. W.L.O.G., it is sufficient to consider the case with 7 = s = 0 (some
simple modifications lead to the general case). Thus it suffices to show that

Q = Plr.y.D:)olz,y)H(D:, Dy)

is a ¥.d.o. (in OPS] (IR" x IR") ). Observe that
Qu(z,y)

= [ [1] Placy €151 = &)= HIE Yl oy = 7 dedy

hence, the symbol of ()

Qo= [ Pla.y. g+ 106 pe g HIE )
The definition of ¥'.d.o. gives that

Cor(l+1E+€ DT

| 9 Plz,y,E+&) | <
< O+ €N+ [N, Yo >0,

therefore, for any (£',n') € R” and (2.y) € K (a compact set in IR"),
‘ a?’QO(Iaywélvnl) '

< Ol Y 0 [ Pleoyg+€)emolg y)de] G HIE )|

0<a; <o
< Y U+ €N HE )
O0<a <er

< Coar(I+ 18T+ 0" 1)



where the last inequality comes from our construction of H, i.e. H(& n')
nonzero only in the region (1+ | & |+ [ 7' |) < C(l+|€]).
The fact

1s a simple exercise of the definition of essential support as well as the map
P,. From the above expression of the symbol of @, it is obvious to see that

ES(PoH) C ES(H) .

a
Remark. In the appendix of [12], Taylor studied some properties of Y.d.o.-
like operators through two lemmas (Lemma A.1 and Lemma A.2). While in
Lemma A.1, for a smooth family of ¢.d.0. P € C=(IR', OPS! o(R""1)), he
obtained essentially the first conclusion of Proposition 3.2. He then showed
in Lemma A.2 that if (§/8, — P,)u € C™, then WFEu)NN =.
We shall make an extensive use of the ¥.d.o. cut-off technique behind
Proposition 2 and examine further properties of these 1.d.o.-like operators.

2 Trace Theorem

We can now state and prove the main result in this paper. a trace theorem.
From now on. t will serve as a distinguished variable. For m > n, II-! -
X € T(IR") - Y € T*(R™) denotes the pullback map, ie. [I71(X) =
{(z.y.6mEY . (2.6) € X}

Theorem. Assume that

m—1
Plz, t,&,7) =77 + Z a;(r. t)rlemTs
=0

1s the principal symbol of a linear partial differential operator P(z.t,D,. D, )
with uniformly bounded smooth coefficients {a;(z,t)}.

Let @ CC R™ = {t = 0} and v =closed conic set C I*(IR") |g such that
(z.£) €y = P(r,0,€,7) has m distinct real roots as a polynomial of 7.

Let T be a closed conic set which does not intersect the normal bundle of
{t =0}. Also, assume that u satisfies the equation Pu = 0 and

w€ H N HSYT N A,
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where v = 171 (~,) C T=(R™") and v, is a conic neighborhood of v€.
Then, for ¢(z,t) € C(Qy) with Q, CcC R™, Q [1=0C Q,

ou '2:06 Hs.

Remarks. If P is elliptic, the stronger conclusion holds by the classical
trace theorem. On the other hand, if P is strictly hyperbolic with respect to
the trace {t = 0}. the conclusion also holds from standard hyperbolic energy
estimates. Moreover, the conclusion of the theorem can not be improved
significantly if the operator is not elliptic.

The equation is not necessarily homogeneous. Also. there are no more
difficulties if the operator has smooth lower order terms. In many situations,
the microlocal smoothness assumption of the solution can be imposed by
appropriate side conditions. such as Cauchy data for hyperbolic problems.

Although in this paper only the p-d.e. with smooth coefficients are consid-
ered, we claim that it is entirely possible to prove trace theorems for general
nonsmooth coefficients cases by analyzing various results on linear propaga-
tion of singularities, for example those in Beals and Reed (3] and [4], on this
matter partial results have be obtained in Bao (1].

Proof of Theorem. For the situations where the operator P is neither
elliptic nor strictly hvperbolic. i.e. both v and v are not empty, the idea of
proof is to construct a strictly hyperbolic Cauchy problem by a v.d.o. cutoff.
Since the problem is local, one may assume that 7=80xUand vF = Q x Y.
where ¢{ is a conic neighborhood of ;. which guarantee that we can find a

convolutional v.d.o. Q € OPS? (R" x IR") (i.e. Q(x.€) = Q(£)) such that
o £S(Q)C U;
e Qo =11inl, and 0 < Q4 < 1.

where Qo is the principal symbol of Q.
Observe that

m

QP =QI](r = kit 2.€))
=1

where {£,} are real and distinct.
The characteristic set C in I=Y(ES(Q)) is the union of m conic sets

CO={(t2.r6)#£0: r=k)}N IYESQ)) .



Following the idea in Nirenberg [7] or Beals and Reed [3], a simple partition
of unity argument allows one to choose {6}, R € OPS}, such that: (1) b,

elliptic in a small conic nbhd of C'¥) and supp b; N (U;,CY)) = 0; (2) R is

properly supported and suppR N (UJC(J)) =0;(3) R+ 5, b = I. Then, by

the calculus of ¥.d.0. we can find q,(,ll)_l € OPST; ! elliptic near C®) with
Pb, = (D, - k,-)qf,i).lbi (modulo smoothing operators).

Define, for £? real number, that

Pi=Q(Di—k)+(I-Q)D -k [¢1).

It follows that P, is strictly hyperbolic w.d.o. of order one and differential in
t, o |
P brow = QPbirou+ (1 = Q)(D; — K | £ Nawl biriou

with r; € OPST ! is the parametrix of q,(,i)_l near C). Standard hyperbolic
energy estimates and pseudolocal property of ¥.d.o. (see, e.g. Taylor [12]) as
well as Proposition 1 yield

I (biou) fiolls< ClIl QIP. birio]u iy + 1| (I ~ Q)biou ls+1]
hence, there is a ¢y Cos.
122 biou) fzolls< Cll oo |, + 1| (1 = Q)ou ls+1]

On the other hand, it is clear that P is ellipticin ITI7HES(Q)) \ U,CY) thus
RQou € Hs+1,

Combining the above arguments, we obtain that
I (o) fi=olls

< Clll gou fls + 11 (1=Q)ow lls11 + | (RQou) lico]s + | (R(I=Q)ou) fi=ols] -

The standard trace theorem and Proposition 1 give

Flou) fizolls< Clitoou lly + 1 (T = Q)ou [lo1 + || RQou 1] -

In order to complete our proof it suffices to show that

([ _ Q)(DU € Hs+1(IRn+1) ’

S



which requires the following lemma.

Lemma. Let B(z,y,D,) € C°°(IR“°'“‘°,OPS{,O(IR'“°) and A(z,y,D;, D,) €

OPS: ((R™), where 1 < mg < ng. Let
N ={(2,6) € R™ x R™, (£, 6my) = 0}
be the normal bundle of R™ x R™~™0  Also, assume that

1. A is microlocal elliptic on a conic set El(A), with N CC El(A);
2w € H'n H A ([T-(R™)\EL(A)] N T 'ES(B(, y. )));
3. Agu € HiP*Y(IR™). where o(z) € C(R™).

loc
Then
Bou € H="*'(R™).

loc

in addition, if B is either a convolutional operator or it symbol has compact
support in space variables,

BOU e Hl~r+1(mng)‘

To be able to apply the above lemma to our proof of the trace theorem,
the assumptions stated in the lemma must be verified. Assumption 2 is just
our assumption in the theorem. Assumption 3 is easy to be verified. Since the
coefficients {a;(z.¢)} are uniformly bounded. P(x.t.&.7) will be microlocal
elliptic in a conic neighborhood X of R*CFINT QT s properly chosen, this
verifies the assumption 1 of the lemma. Thus. as an immediate consequence
of the lemma, we obtain that

(I - Q)ou e H**!

which completes the proof of our trace theorem. a
Remark on the Lemma. The operator 4 plays a very important role here.
Fortunately, for many problems the operator in the linear partial differential
equation can be often chosen as A. which is implied by assumption 3.
Proof of Lemma. We only prove the first part of the conclusion, the second
part can be shown by a simple application of our proposition 1.

By assumptions 1 and 2, we can find a conic set Elly, such that V' C
Elly CC Ell(A),and v € H'n HTI,:*I’([T"(IR“O)\EHI] NI;'ES(B(-,v,))).

One can also construct a y.d.o. H, € OPS?(IR™) which satisfies

9



o ES(H,) C Ell(A) and
o the symbol of H1. by =1 on Ell; N {(z,€): |¢| > 1}.
Write ¢ = ¢, with 0, € C5°(IR™); we then have
Béu = BoiHéu + Béy(I — H)ou
with H = 1 - H,.

Since

Ach’)u = [A, H1]¢U + Hl 4¢U

and [A, H] has order s — 1, we have
AHiou € H{7*H

which follows by assumptions 1&2 and Proposition 1.
From assumption 1 and the fact

ES(H,) C El(A),
where EII(A) is the microlocal elliptic region of A, it is easy to see that

Hiou € HFY

loc

Thus Proposition 1 gives

B(Dl Hl ou € Hl_.r+1

loc .

On the other hand, from the construction of H. our Proposition 2 implies
that
BoiH € OPS] ,(R™).

Moreover,
ES(BéiH) C I ES(B(-,y, )NES(H) € [T*(R™)\EILJAI; ES(B(-. y. )) .
Therefore, a simple property of wavetront set vields
BoHou € HF'
Eventually, combining the above arguments, we have
Bou = Bop,Hou + B¢ H,pu € Hit

which finishes the proof. O

10



3 Half Space and Characteristic Trace The-
orems

The aims of this section are to carry over our ideas in last sections to some
more difficult situations. It is obviously crucial to investigate the trace regu-
larity of solutions to linear partial differential equations defined only on one
side of the trace hypersurface (corresponding to boundary value problems).
The difficulties will present immediately due to the fact that the Y.d.o. cut-
off technique engaged in the proof of the previous lemma will break down
around the trace in general. Nevertheless, one is able to get some partial
results along the same line of the proof of the trace theorem as follows.

Corollary 1 (half space trace theorem) 4ssume that P(z,t, D,, D) isa
linear partial differential operator of order m with smooth coeffictents. Also,
assumne there is a smooth family of v.d.o. and a small constant € >0,

QUt)=Q(xr.t.D,) € C={[0.e].OPSY ()} .

with Q s an open subset of R™, such that
(1). if (2.8) € [ES(Q)]C forall 0 < t < e, Plx t &, 7) has m distinct
real roots as a polynomial of 7
(2). (Qu) le=o€ HZ' (), 0<ty <,
where u € H, (Q x [0,€]) satisfies the equation Pu =0 in Q x [0, €].
Then, for o(z.t) € C§(Q x [—e.€]).

(ou) =o€ H*(0).

Idea of the proof. We basically follow the proof of the trace theorem.
making the necessary modifications. Let us first extend w (in whatever way)
to a small neighborhood of the trace such that

we HL(Q x [—e€]).

W.L.0.G. we may assume that u(z.¢) has compact support in r. Moreover,
the pseudolocal property allows one to assume further that @ is compactly
supported in r. Therefore, for all r € R

Q: H(Q) — H(Q), uniformly in ¢ € [0, €].

11



Knowing the facts
L 16Qu i) di < +50 and u € Hi (9 x [—c.c)) |

the same technique as in the. proof of the trace theorem will yield the con-
clusion. m;

Another interesting case would be that the trace hypersurface is charac-
teristic, then a slightly different v.d.o. cutoff technique will be needed. To
clarify the ideas, we assume that. after some coordinates transformation, the
characteristic hypersurface is {t = 0} and furthermore the operator has a
simple form. We then have the following result.

Corollary 2 (characteristic trace theorem) Assume that P(z.t,D,, D,)
is a linear partial differential operator of order m with smooth coefficients,

Plz.t.D,. D) = B(a. D;)o/ot — A(z, D)

with A,B are differential operators of order m + 1, m respectively. Assume
there is a v.d.o. Q(r.D,) € OPSYo(). Q is an open subset in R", such that
(1). of (z.€) € [ES(Q)]C. then the principal part of B(z,£) #0
(2). (Qu) le=e€ HEEN(D), 0<tg<e.s>0,
where u € H},.(Q x [0.¢]) satisfies the equation Pu =0 in Q) x [0,¢€].
Then, for o(z.t) € C5(0 x [—e.€])

(Bouw) [i=o€ H*™™(Q).

Sketch of the proof. Observe that. for P = P/B formally,

P=(I-Q)P,+QPF,

with Py a strictly hyperbolic p.d.o. of order one. Again, P is a strictly
hyperbolic 1.d.o. of order one and is differential in ¢, From

PBou = (I - Q)[P.¢Ju+ QPyBou .

the similar arguments as before will vield the conclusion.
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